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The methodological aspect of diffusion approximation is analyzed.
The effect of the function characterizing the radiation of the medium,
of the boundary conditions, of the optical depths, and of the thicknesses
on approach to the plane layer on the coefficient of diffusion is inves-
tigated, Recommendations are given with respect to the application of
the diffusion approximation.

The analogy between photon propagation and the dif-
fusion of molecules in an admixture in a gas was ap-
parently first validated in {1, 2] for reemission and in
[3] for scattering. The analogy was then extended to
neutron flows [4-7]. The diffusion approximation is
treated in [8] as a consequence of the phenomenolog-
ical differential equation of the transfer of radiant
energy; in [9] it is treated as a consequence of the
"forward-backward" approximation for average co-
sines equal to 1/(3)Y%; in [6,7,10,11] it is treated as
the first term of the expansion in the method of spher-
ical harmonics; in {12] it develops that the diffusion
approximation results from consideration only of the
first derivative in the expansion in Taylor series of
the sought function in the integral equation; it is pre-
sented in [13] in the asymptotic form of the integral
equation of transfer for points distant from the bound-
aries. Here the diffusion approximation will be treated

_as an independent phenomenological equation of trans-
fer, in which the density of the radiant energy is taken
as the potential of the transfer field. In addition to
simplicity, this results in freedom in expressing the
diffusion coéfficient

_ ¢
1= mk

grad U. (1)

From the mechanism of diffusion in an infinite medium
for divg = 0 we have m = 3, The number m may vary

significantly at the boundaries at distances <2-3 mean
free paths, In the case of the "forward-backward" ap-

proximation with the average cosine 0.5, m = 4 [14,15].

In [16,17], etc., m = 3 is recommended for the core
of the flow and m = 4 is recommended for the points
close to the boundaries. However, the value of m fre-
quently exceeds the limits of this interval. A signifi-
cant refinement of the calculations results from
variation of the boundary conditions, It is recom-
mended in [6,18,19] that a factor determined by the
solution of a simple problem be added to the magnitude
of the radiant-energy density at the boundary; it is
demonstrated that this may result in excellent agree-
ment with exact solutions. The most exact boundary
conditions are determined iteratively {20, 21]. How~
ever, in addition to the substantial increase in com-
plexity, we note that this refinement affects the heat
flow exclusively. The effect for the temperature field

is insignificant. The 3% accuracy for the temperature
field in [20] is apparently accidental, since the T*
field is linear with the same accuracy. In {22] (unlike
the analogous problem in [23]) the exact boundary con-
ditions are used because of symmetry, but the error
in the determination of the temperatures was great.
The most exact boundary conditions are evidently not
sufficient to offset the fact of the variation in the num-
ber m with the coordinate [22]. A physical foundation
is provided in [24] for the theorem on the change in
the number m with the coordinate and the function
m(r, 7o) is studied for two of the simplest problems,
The basis for the criticisms of the diffusion approxi-
mation in [22, 25, 26, etc. ] should be sought not only in
the boundary conditions, but also in the changes in the
number m.

Limiting ourselves to one-dimensional problems,
on the basis of the exact differential equation [27~-29]

q=— % divP (2)
we obtain
qG=— 'Z— grad P,. (3)

Thus in actual fact the transfer potential is a compo-
nent of the radiant-pressure tensor
1

Pi=—— j‘ Tcos?0do. (4)
¢ 41

Unlike the exact equation (8), Eq. (1) exhibits an ad~
vantage in the direct relationship between the transfer
"potential” and temperature:

U = 4o T4 — £ (5)
o

thanks to which the diffusion approximation remained
viable, despite all of its shortcomings. It is recom~
mended in [20,21] that Eq. (2) or (3) with exact con-
dition at the boundary serve as the basis. Here the
temperature field, without which the application of (2)
or (3) is impossible, is determined from (1) and (5).
As a result we see that: a) without the diffusion ap-
proximation the solution of (2) and (3) is possible only
through the trial-and-error method or by resorting to
an integral equation and, thus, (2) or (3) cannot be the
equivalent of an integral equation; b) for the actual
utilization in [20, 21] of the diffusion approximation,
everything is additionally reduced to the selection of
the boundary conditions. We return to the inadequacies

of the boundary conditions in the light of the variable
number m,
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Here the function m(r, ) is studied in approxima-
tion of a plane layer in order to develop additional
recommendations. The first method for the analytical
study of the function m(r) involves replacement of the
boundary surfaces by an equivalent radiating medium
which subsequently extends through the interval [—,
w]. If the function Bgg(7) in this interval has a sufficient
number of derivatives, it is possible to expand it in
Fourier series with respect to the point 7 and addi-
tionally to present in power series

B .(t)=a+f1(w)+f(w),
B_(t') = a+f1(u) fa(w),

where fi(u) and fy(u) are, respectively, the even and
odd power functions corresponding to the cosine and
sine series. Bearing in mind that

1+(Tv H’)=

ew= o

1
cPyy=2n S (/. +1-)ypdnp,
b

-

B, (t') exp (—— hd _T) dz

p B

( T—1 ) dtv
") exp -,
p m

df“"‘)S

1
cU=2n‘§ U, +1)dp,
0

we obtain

4 « _
- | Aepi—y [ S hWE® du]

¥ b
As we can see, the number m is determined exclu-
sively by the odd portion of the function B ¢(u). As-

suming f, (u) = 2 bu*+!, we have

k=0

_ i 2k'bk(z (2 + 1)'bk)
paurd farr ok + 3
If the function fy(u) is linear, then m = 3. Generally,
however, the coefficients b are not easily deter-
mined. Moreover, the function Bg¢(u) is not always
smooth, particularly near the surfaces. The second
method of investigation is therefore more convenient,
involving the direct consideration of the boundary
conditions.
The potentials of transfer in (1) and (3) have the
form:

cU = 2q 4+:E, (1) + 2g eg2Ea (1o — ) -+
.,
+2ﬂ5‘Bef\T)E1|T—T|dT, (6)
§

€Pyy = 20 o1 E (1) 20 oy (1o — 1) +

+2n j By (tVEy|7 —ldT. (7)

0
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Joint solution of (1), (3) and (6), (7) yields
) T
me W = | BO—gBm—0 + [ B0 x
0

dt’

X exp[— (1 — 7)) ,
T—T

B, () x

Ayt

X exp[— (1’ — 1] —‘?1;} [Es(v)—q2E3(ro—r)+

+ j' B, (tYEy(t—1)dt —
b

T, . —
— ‘S' B*(r')EZ(T'—T)dr'} l
T

The presence in the numerator of the function E,(u)
for which, as u—- 0, E;(u) ~ « results in singular-
ities in the function m(r, 7y). These arise at the points
with temperature discontinuities as, for example, at
the boundaries in the case of a medium of low thermal
conductivity or at points with discontinuities in the
function B, . These singularities are localized by small
values of u, since only for small u does E(u) assume
large values. When B, = const

E;(1)(1 —By) + Ei(ty—7) By —qa) .
E;(\Y(1—B,) + Es(tg — 1) (B, — ¢2)

Here, for the middle of the layer

m(T—°> _ E(w2 (8)
2 E, (%y/2)

and, as we can see, for the points most removed from
the boundaries, a change in m is possible over a wide
interval of values; the number m is independent here
of B, and qy.

For the plane layer when divq = 0 the function By{r)
is linear, with an error of 3% [30, 31}:

m(t, 1) =

=a, —b,1,
1—gq, . +
where
_l—exp(—1) + 27 — T Fs (7o)
* 2[1 —exp(— To) -+ Tl
— 1 — E5 (%) .
* L —exp(— 1) + Ty .
Then

mit, T) = E (0)(1 —a, + b, 1) +E {t,— )%

X @y — by v) + by [2—exp(—1)—
—exp(— (T — 1)) {Eq(r)(l—a by T) 4

+ E (1, —1)@: — b 1) + by [%— —E (v)—

—E (tg— 1) — TEs(D)— (1p— 1) E3 (xg— r)—J}*’l .

For the middle of the layer

(3)- (a2 e



JOURNAL OF ENGINEERING PHYSICS

+2[1—Ey(1y)] [1 — exp (h%”} {Eg (%)x

At n—en |+ 31— Ew)x

—1

<[ (=) =m0
Here the number m changes in the interval [«, 3] and
unlike the case with B, = const on the segment {0, 7]
there are no values less than 3. For 1y » 1 and
points not close to the boundary, m =~ 3, For 7y « 1
and 7 = 7,/2 we obtain the earlier relation (8).
For By = const in the interval |7, 7,], where 7y > 14

miT, T =
” Ey (1) — goEy (v — Ty +BylE T — o [—Elt—1]]

T Ey(t) —aEs (g — D+BUEs It — To|— By v, I

I3

A multiplicity of other cases is examined analogously.

As we can see, for the exact determination of the
temperature field we must determine the function
mir, 7y) by the method, for example, of successive
approximation; the boundary conditions can be deter-
mined exactly at the same time, as done, for example,
in [20,21]. However, this procedure is more complex
than the direct solution of the integral equation. There~
fore, it is recommended that we limit ourselves to an
approximate study of the function m(r, r,) to provide a
justification for diffusion approximation and for the
selection of the number m with selection of the bound-~
ary conditions from [6,18,19].

NOTATION

q is the radiant flow vector, in W/m?; m is the di-
mensionless function (number) under investigation;
k = @ + 3 is the attenuation factor, in m~!; o and g
are the absorption coefficients (reradiation) and dis-
sipation; U is the radiant energy density, in J/m®; P
is the tensor of ray density (second rank), in J/m?;
Py, is its component determined by (4); I is the radiant
flow intensity, in W/m® - ster; I, and I_ are the inten-
sities in the positive and negative directions of the co-
ordinate axis, respectively; dw is the element of solid
angle; 8 is the angle between the axis of coordinates
and a ray; Tis the absolute temperature; ! isthe coor-
dinate with its origin near surfacel, inm; [, is the layer
thickness, in m; B, and B_ are identical to Bgys for
both sides from the point adjacent to coordinate 7
defy and gef; are the densities of effective hemispher-
ical flows at the boundaries of the layer, in W/m?; by
is the coefficient of the odd power function f,(u), in
W/m?; a, and b, are the dimensionless coefficients
explained in the text; g, is the specific power of
sources independent of radiation, so that g, = divg,
W/m?; ¢ =3+ 10° m/sec; 0 =5.68- 1078 W/m®? - deg?;
p=jeos8l;us=|r"=71|; 7= \ kdi; 7'0:'5' kdl; qq =

1 1
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= Qefy/deft; Bx = 7Bef/defy; mBep = 0T ~ (B/4ak)gy;

Ep(r) = | t™Dexp (~rt)dt.
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